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There is wide interest in the role of the endothelial surface layer (ESL) in transmitting
blood shear stress to the intracellular cytoskeleton of the endothelial cell. However,
very little is known about the mechanical properties of the glycocalyx or the flexural
rigidity of the core proteins that comprise it. Vink, Duling & Spaan (FASEB J., vol. 13,
1999, p. A 11) measured the time-dependent restoration of the ESL after it had been
nearly completely compressed by the passage of a white blood cell (WBC) in a tightly
fitting capillary. Using this initial experiment, Weinbaum et al. (Proc. Natl. Acad. Sci.
USA, vol. 100, 2003, p. 7988) predicted that the core proteins have a flexural rigidity
EI of 700 pNnm2, which is ∼1/20 the measured value for an actin filament. However,
their analysis assumes small deflections and only the fibre motion is considered. In the
present paper we report additional experiments and apply large-deformation theory
for ‘elastica’ to describe the restoration of the fibres in a Brinkman medium which
absorbs fluid as the ESL expands. We find that there are two phases in the fibre
recoil: an initial phase for large compressions where the ESL thickness is < 0.36
its undisturbed thickness, and the ends of the fibres overlap and are parallel to the
capillary wall; and a second phase where the fibres assume a shape that is close to the
solutions for an elastic bar with linearly distributed vertical loading. The predicted
time-dependent change in thickness of the ESL provides remarkably good agreement
with experiment and yields an estimate of 490 pNnm2 for the flexural rigidity EI of
the core protein fibres, which is unexpectedly close to that predicted by the linear
theory in Weinbaum et al. (2003).

1. Introduction
The problem of the elastohydrodynamic recoil of a matted layer of initially uniform

vertical fibres in a viscous fluid arises in many contexts from the stroking of fur and
the motion of the bristles of a soft brush, to the recoil of the endothelial glycocalyx
after the passage of a white blood cell (WBC) in a tightly fitting capillary, the
motivation for the present study. The motion of a periodic array of vertical fibres in
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a plane wall has been studied in a variety of biological applications. Some prominent
applications include beating cilia (Liron & Shahar 1978), the flow past brush border
microvilli in the proximal tubule (Guo, Weinstein & Weinbaum 2000), cilia in the
cortical collecting duct (Liu et al. 2003), and the transmission of fluid shear stress
by core proteins comprising the glycocalyx that forms the endothelial surface layer
(ESL) (Secomb, Hsu & Pries 2001a; Weinbaum et al. 2003). Beating cilia in a channel
have been treated using Liron’s extension (Liron & Mochon 1976; Liron & Shahar
1978) of Blake’s singularity (Blake 1971) for the motion of a Stokeslet near a planar
boundary. Since beating cilia is an active process in which the motion is prescribed,
one does not need to consider their passive elastohydrodynamic response. In contrast,
in problems involving mechanotransduction, such as the flow past brush border
microvilli, or primary cilia in the cortical collecting duct, or core proteins in the ESL,
the deformation of these cellular protuberances or molecular fibres plays a critical
role since it is related to the deformation of the intracellular cytoskeleton and, hence,
intracellular signalling.

The fluid flow in the three mechanotransduction problems mentioned above
has been examined using effective-medium theory (Brinkman equation) and the
deformations determined using a theory for the small deflections of a cantilever
beam (Gere & Timoshenko 1990). These latter analyses employ the solutions of
Sangani & Acrivos (1982) for the local Stokes flow past a two-dimensional hexagonal
array of circular cylinders to first determine the local hydrodynamic loading on the
protuberances or fibres and then use this loading to determine their deflection. There
is no motion of the fibres in these analyses since the external flow is steady and the
deformation is constant. These steady flow analyses were recently extended to treat
the elastohydrodynamic response of the fibres in a time-dependent oscillating flow
where the relative motion of the fibres and the fluid is considered (Han, Ganatos &
Weinbaum 2005). This theory was limited to small fibre deformations.

A problem that has attracted widespread attention is the role of the ESL in
transmitting fluid shear stress due to the flowing blood to the intracellular cytoskeleton
of the endothelial cell. This problem raises a fundamental paradox since it is generally
agreed that the flow within the ESL is negligible and the shear stress at the level of the
cell membrane vanishingly small (Damiano 1998; Feng & Weinbaum 2000; Secomb,
Hsu & Pries 1998; Secomb, Hsu & Pries 2001b; Weinbaum et al. 2003). Various
models have been proposed to explain the mechanism via which the shear stress is
transmitted to either the cell membrane or the cell’s actin cytoskeleton and why the
ESL maintains its structural rigidity under flow (Damiano & Stace 2002; Secomb et
al. 2001a, b; Weinbaum, et al. 2003). Secomb et al. (2001a, b) propose that its structural
integrity arises from an oncotic force due to trapped plasma proteins. Damiano &
Stace (2002) suggest that this is due to electrochemical effects associated with the
negative charge on the glycosaminoglycans (GAG) of the glycocalyx. Weinbaum
et al. (2003) propose that it arises from the flexural rigidity EI of the core proteins of
the ESL. The merits and deficiencies of each model are summarized at the end of the
paper.

While the existence of the ESL and the first measurements of its thickness in vivo
were obtained in Vink & Duling (1996), the three-dimensional structural organization
of the ESL was not realized till Squire et al. (2001) were able to identify for the first
time the quasi-periodic substructure of the glycocalyx and its anchoring foci. The latter
appear to emanate from the underlying actin cortical scaffold beneath the membrane
which takes the form of an ordered hexagonal array. The model proposed in Squire
et al. (2001) was developed into an idealized mathematical model in Weinbaum
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Figure 1. Structural model for the endothelial surface layer (ESL) from Squire et al. (2001)
and Weinbaum et al. (2003). (a) Sketch of the arrangement of core proteins in the ESL and
its anchorage to the underlying cortical cytoskeleton. (b) En face view of the structural model
showing the hexagonal arrangement of core proteins and cluster foci.

et al. (2003). This idealized model with its characteristic dimensions is shown in
figure 1. The basic structural elements of the ESL are assumed to be the core proteins
of proteoglycans, the most likely candidate being syndecan I, a transmembrane hep-
arin sulphate proteoglycan (Mulivor & Lipowsky 2004). Hyaluronan and chondroitin
sulphate also play an important role in its assembly and sieving properties (Henry &
Duling 2000). Recent studies have shown that the primary functions of the ESL are
not only to protect the endothelium, but also to serve as a mechanotransducer of
fluid shear (Weinbaum et al. 2003; Thi et al. 2004) and a molecular sieve for plasma
proteins (Michel 1997; Weinbaum 1998; Hu et al. 2000; Adamson et al. 2004). A
review of the state of knowledge of the ESL, its properties and function is given in
Pries, Secomb & Gaehtgens (2000).

Very little is known about the mechanical properties of the glycocalyx or the
flexural rigidity, EI, of the core proteins that comprise it. However, Vink, Duling &
Spaan (1999) reported an initial experiment from which these properties can be
deduced with the aid of a mathematical model. This experiment, which was published
as an abstract, is described in detail in the present study. In the experiment one
measures the time-dependent restoration of the ESL after it is nearly completely
compressed by the passage of a WBC in a tightly fitting capillary. This restoration is
estimated by measuring the gap between the endothelial cell (EC) membrane and the
membranes of red blood cells (RBCs) that follow at different distances in the wake of
the WBC. One finds that the characteristic time for the restoration is approximately
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0.4 s. Damiano & Stace (2002) and Weinbaum et al. (2003) have both attempted to
predict this characteristic time using either an electrochemical or elastic mechanism
for the recoil of the crushed ESL. The elastic model in Weinbaum et al. (2003), which
is the catalyst for the present study, predicts that two characteristic times describe
the recoil: a short time associated with the relaxation of the initial shape of the core
proteins after their compression, and a long-time behaviour associated with the final
phase of the motion. EI is determined by requiring that the latter time match the
measured value 0.4 s taken for the ESL to return to its initial undisturbed thickness.
Using a time-dependent beam equation for small deflections, in which the local force
on the fibre is proportional to its local instantaneous velocity, it was predicted that
the core proteins have a flexural rigidity EI of 700 pNnm2. This is about 1/20 the
measured value for an actin filament, the structural element beneath the membrane
that anchors the bush-like core protein structure, see figure 1.

The foregoing linear analysis in Weinbaum et al. (2003) was intended only as a
rough guide for predicting EI. The large initial deformations of the core proteins lie far
outside the range of validity of the small-deflection theory used in their analysis and
the fibres were assumed to recoil in a stagnant fluid. No attempt was made to predict
the time-dependent change in shape of the fibres during their recoil. Furthermore,
the analysis in Han et al. (2005) shows that the motion of the fibres induces a
motion of comparable magnitude in the fluid in planes parallel to the membrane
and the latter was neglected in Weinbaum et al. (2003). In the present paper a more
sophisticated nonlinear analysis is attempted which is a more realistic representation
of the mechanics of the fluid and fibre motion. Large-deformation theory for ‘elastica’
is applied to describe the time-dependent motion of the fibres and their changing
shape. In addition, the fluid flows in directions both normal and parallel to the wall
are considered. The flow normal to the wall is of special interest since the displaced
volume occupied by the fibres induces a normal velocity that entrains fluid into
the fibre layer as the fibres recoil and the solid fraction decreases. The flow in the
direction parallel to the wall is very similar to the analysis in Han et al. (2005). There
is very little relative motion of fluid and fibre in this direction except for a thin
fibre interaction layer near the edge of the glycocalyx. Two phases are found in the
fibre recoil: an initial phase for large compressions where the glycocalyx thickness
is < 0.36 of its uncompressed state and the ends of the fibres overlap and a second
phase where the fibres assume a shape that is very similar to the well-known solutions
for an ‘elastica’ with a linearly varying load. Using this model for large deformation,
we also predict the time-dependent change in shape of the glycocalyx fibres during
the recovery of the ESL.

The body of the paper will be divided into four sections: a methods and results
section describing the experiments for the glycocalyx recoil, a theoretical section
describing the formulation and solution of the nonlinear large-deformation equations
for the time-dependent change in the shape of the fibres, a results section comparing
theory and experiment and a discussion section which will explore the plausibility of
various mechanisms that have been proposed for the glycocalyx recoil.

2. Experimental methods and results
2.1. Methods

The cremaster muscle of hamsters was prepared as in described Constantinescu,
Vink & Spaan (2000). The cremaster muscle was observed with an intravital
microscope (Olympus BHM) and a cooled ICCD video camera (GenIV ICCD,
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Princeton Instruments). The tissue was transilluminated with a Hg lamp (100 W)
equipped with a 435 nm bandpass interference filter (blue light) using an aplanat (lens
free from spherical aberration), achromatic condenser set at numerical aperture (NA)
1.2 (U-AAC, Olympus). All preparations were examined with a ×60 water immersion
objective lens (Olympus, UPlanApo NA 1.2 W or LUMPlanFL NA 0.9 W) and a
telescopic tube to give a final object-to-camera magnification of ×200. Images were
displayed on a Philips CM 8833-II video monitor and recorded using a SVHS video
tape recorder (JVC BR-S611E) and a time coding interface unit (JVC SA-F911E) for
further image analysis.

Video images were digitized using a frame grabber (DT3152, PCI Local Bus)
and Image-Pro Plus software (Image-Pro Plus version 3.0, Media Cybernetics, Silver
Spring, PA, USA). An onscreen caliper using a 1 mm/0.01 mm stage micrometer was
used for all calibrated dimensional measurements. The anatomical capillary diameter
and the width of the flowing red blood cell column were measured using digital calipers
at the inside of the capillary wall to determine the dimension of the endothelial–RBC
gap prior to, during and after spontaneous capillary leukocyte passage.

2.2. Results

A microscopic image of a transilluminated hamster cremaster muscle capillary is
shown in figure 2(a). The gap between the membranes of flowing RBCs and ECs is
clearly identified, being greater in larger capillaries as previously shown (figure 2(b),
from Vink et al. 1999). The dimensions of RBC–EC gaps in small (D = 4.2 ± 0.1 µm,
n = 21), medium (D = 5.1 ± 0.0 µm, n = 82) and large (D = 6.2 ± 0.1 µm, n = 94)
capillaries are 0.3 ± 0.03, 0.5 ± 0.02 and 0.7 ± 0.04 µm respectively. Figures 3(a–d)
shows the results of four experiments describing the recovery of the RBC–EC gap
after the passage of a WBC in capillaries varying from 4.4 to 6.0 µm diameter. Layer
recovery times (t) after WBC compression range between 0.5 and 1.0 s and correlate
with capillary diameter (D): t = 0.26D − 0.62 (n = 6, P < 0.05), i.e. recovery times
are shorter in smaller capillaries. Consequently, layer recovery rates are, surprisingly,
independent of capillary diameter: RBC–EC gap dimension/t is 0.64 ± 0.06, 0.71 ±
0.03 and 0.71 ± 0.04 µm s−1(P = NS) in small, medium and large capillaries (figure 2c,
from Vink et al. 1999). Figure 3(a–d) shows a nonlinear restoration of the glycocalyx
layer that ends rather quickly when the initial layer thickness is approached. There
is no long-time asymptotic behaviour. It is this essential feature that our non-linear
model will attempt to replicate. The characteristic rise time for full restoration varies
from 0.5 to 1.0 s. The experiment which provided the largest compression of the ESL
and the most detailed set of data is for the 4.4 µm capillary shown in figure 3(a). In
this experiment we estimated the ESL was crushed to 20 % to 25 % percent of its
initial undisturbed thickness. Such large fibre deformations fall far outside the range
of cantilever beam theory and are described more accurately by ‘elastica’ theory.

3. Mathematical model
RBCs produce a slow draining of the ESL when brought to rest, with a characteristic

draining time of 0.5 s (Weinbaum et al. 2003), and gradually rise through the ESL
as their velocity increases when flow is started again. In contrast, WBCs are much
stiffer, in view of their nuclei and cytoskeletal organelles and, as observed in figure 3,
the initial compression of the ESL by the passing WBC is nearly instantaneous
and independent of its velocity. The mechano-electrochemical model in Damiano &
Stace (2002) and the elastic recoil model in Weinbaum et al. (2003) were largely
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Figure 2. (a) Microscopic image of a transilluminated hamster muscle capillary showing the
measurement of RBC–EC gaps; (b) the relation between anatomic capillary diameter and
RBC–EC gap size; and (c) the gap recovery rate as a function of capillary diameter.
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Figure 3. RBC–EC gap recovery as a function of time after the passage of a WBC through
a capillary with a diameter of (a) 4.4 µm, (b) 5.1 µm, (c) 5.2 µm, and (d) 6.0 µm.

concerned with predicting the characteristic time for this restoration and not the
detailed time-dependent change in the shape of the fibres during their recoil. It is also
clear from the observed structure of the ESL (Squire et al. 2001), and the size of the
scattering centres along the core proteins depicted in figure 1, that the volume fraction
of the solid matrix could approach near close packing for the very large deformations
observed in figure 3(a). These observations suggest that a realistic model needs to
include both the changing solid fraction c of the expanding glycocalyx and realistic
shapes of the core proteins from the initial passage of the WBC till the final restoration
of the ESL. Thus, the formulation of the theoretical model is divided into two major
subsections: a model for the fluid flow and a model for the instantaneous fibre or
core protein shape. The fluid flow model must take account of both the instantaneous
x and y components of the velocity of the fluid and the recoiling core proteins and
the changing solid fraction, the latter at least in a time-average sense. This changing
value of c provides a source term for entraining fluid and, thus, adds to the drag on
the fibres. The fibre model exploits a realistic family of shapes obtained from known
solutions to the ‘elastica’ equations and simple experiments where the qualitative
shape of an ‘elastica’ is observed when a flat planar surface moves over the fibre.

3.1. Model for the fluid

The fluid flow in the recoiling fibre layer is modelled as a flow in a porous medium
with an average time-dependent solid fraction c, as shown in figure 4. Physiologically,
there is a pressure gradient in the x-direction. However, the velocity it generates is
<10 nm s−1 in the interior of the ESL for the fibre geometry depicted in figure 1, and
thus negligible compared to the fibre recoil velocity. Furthermore, the fluid flow varies
slowly in the x-direction. Thus, we will neglect the pressure gradient in the x-direction
and the first and second derivatives of the fluid velocities with respect to x in the
continuity equation and the Brinkman equation describing the fluid fibre momentum
balance. The continuity equation contains a source term with a time-varying solid
fraction,

∂(1 − c)

∂t
+

∂uy

∂y
= 0. (1)
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Figure 4. Simplified model for the structure of the ESL. The ESL is modelled as a porous
medium with an average solid fraction c dependent on the ESL thickness, with scattering
centres (black dots) 12 nm diameter located at 20 nm intervals along axes of the core proteins.

Here uy is the fluid velocity component in the y-direction and c is the instantaneous
average solid fraction of the ESL. The uncompressed ESL has a solid fraction of 0.16
using a structural model with 12 nm diameter spherical scattering centres spaced at
20 nm intervals along the axes of the core proteins as shown in figure 1. The inertia
of the fluid is negligible. The governing Brinkman equations for the fluid motion,
which take account of the quasi-steady relative motion of the fluid and the fibres in
the x- and y-directions, are

ux − ∂νx

∂t
= KPx

∂2ux

∂y2
, (2)

and

∂P

∂y
= µ

∂2uy

∂y2
− µ

KPy

(
uy +

∂νy

∂t

)
. (3)

Here P is the fluid pressure, µ is the fluid viscosity, KPx and KPy are Darcy’s
permeability of the ESL in the x- and y-directions, respectively, and νx and νy are
the fibre deflections in the positive x and negative y directions, respectively, and are
functions of x, y and t . The applicability of using a Brinkman equation to describe
the fluid motion in the ESL is described at length in Damiano et al. (1996) and Feng,
Ganatos & Weinbaum (1998). Despite its limitation in describing the transition from
a Darcy flow in the interior of the ESL to a steady laminar flow outside this layer, it
has been used in nearly all recent theoretical studies for the fluid flow in this layer.
As we shall show shortly, the transition layer is of little importance in the present
study and the viscous term can be dropped.

The solid mass is conserved throughout the fibre recoil process. Thus,

c =
coho

h
, (4)

where h is the instantaneous ESL thickness, and co and ho are the uncompressed solid
fraction and thickness. Note that (4) neglects the local variation of c as a function
of y. The instantaneous solid fraction, c, is treated as an average value for the entire
ESL that satisfies the global mass balance for the layer. This approximation greatly
simplifies the analysis. Combining (1) and (4), one obtains

uy = y
dc

dt
= −ycoho

h2

dh

dt
. (5)
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Let us assume that the characteristic length lc is the uncompressed ESL thickness
ho, 400 nm, and the characteristic velocity in the x-direction for both the fluid and
the fibre tip is the fluid velocity at the ESL edge. Thus, the term, KPx∂

2ux/∂y
2, in (2)

has a scale of KPx

/
l2c , ∼ 10−4 since the Darcy’s permeability, KPx , of the undeformed

ESL is 3.16 nm2 (Han et al. 2005; Weinbaum et al. 2003). Thus, equation (2) can be
rewritten as

ux =
∂νx

∂t
(6)

except for a thin tip interaction layer at the edge of the ESL where the higher-order
derivative term KPx∂

2ux/∂y
2 is required to describe the flow transition at the ESL

edge. The solutions in Han et al. (2005) and Weinbaum et al. (2003) show that this
slip velocity is typically a few µms−1 when the fluid shear stress at the ESL edge is
10 dyn cm−2. In the present application this shear stress is much smaller due to the
slow velocity of the WBC. In the interior of the fibre layer the fluid flow induced by
the edge velocity is negligible. In contrast, the fluid flow induced by the fibre motion
is dominant. Thus, equation (6) is a good approximation except for the tip interaction
boundary layer at the outer edge of the ESL which is described in Guo et al. (2000)
and Han et al. (2005). Substituting (5) into (3), one obtains

∂P

∂y
=

µ

KPy

(
∂νy

∂t
− ycoho

h2

dh

dt

)
. (7)

Equations (5)–(7) define the fluid velocity and pressure field except for the tip
interaction layer. Both fields depend on the instantaneous ESL thickness h(t), its
velocity dh/dt and the local components of the fibre velocity, ∂vx/∂t and ∂vy/∂t .

3.2. Time-dependent fibre recoil

Figure 5 shows our two-phase fibre recoil model schematically. As alluded to earlier,
the qualitative shape of a deformed fibre after the passage of a WBC can be deduced
from simple experiments in which a planar boundary is passed at different heights
over a thin vertical elastic strip rigidly anchored at its base. One finds that the strip
takes the shape of an ‘elastica’ that is loaded at its tip until the point of contact with
the planar boundary and that from there to its end the strip is parallel to the planar
surface. This is the initial assumed shape of the fibres after the passage of the WBC.
In phase I it is assumed that the fibres recoil through a family of shapes which have
this basic geometry with the location of the zero-slope point shifting towards the end
of the fibre as it rises (dashed line dνy/dx = 0 in figure 5). With closely spaced fibres
that overlap near their top surface this geometry is quite realistic. At the transition
point at the end of phase I (h= ht ), the slope of the fibre at its tip is horizontal. In
phase II, the slope at the fibre tip continues to increase as the fibre recoils back to its
original upright shape from the transition point.

3.2.1. Hydrodynamic loads on the core protein fibre

The fluid drag force on the core protein fibre is proportional to the relative velocity
between the fluid and the fibres. However, equation (6) shows that there is no
relative velocity in the x-direction except in the tip boundary layer, which we neglect.
Furthermore, the solutions in Han et al. (2005) and Weinbaum et al. (2003) show
that the fluid shear stress at the ESL edge causes a very small deflection of the core
protein fibres compared to the large deformation caused by the passage of the WBC
in the present analysis. This small deflection describes the final steady state after the
fibre recoil is completed. In contrast, there is a substantial relative velocity in the
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Figure 5. Parametric family of shapes for core protein fibres during the ESL recovery. In
phase I the tip ends of core protein fibres are matted and in phase II the core protein fibres
are no longer matted and have a slope >0 at their ends.

y-direction between the fluid and fibres due to the entraining effect of the recoiling
fibre layer and the fact that the fibre is moving upward relative to the fluid whose
normal velocity vanishes at y = 0. The relative motion of the fluid and the fibres is,
therefore, much greater in the y-direction than in the x-direction and the latter can be
neglected. We decompose the drag force due to the relative motion in the y-direction
into force components normal, n, and tangent, t , to the local fibre direction since the
drag coefficients or the Darcy permeability differ for flow normal and tangent to the
fibres. We write the drag force in vector form as

f = {fn, ft} = µ
π

c
r2

(
uy +

∂νy

∂t

){
cos θ

KPn

,
sin θ

KPt

}
. (8)

Here θ is the local tangent angle of the fibre and KPn, KPt are the Darcy permeability
for the flow normal and tangent to the fibre, respectively. Substituting (5) into (8),
one obtains

f = {fn, ft} = −µ
π

c
r2

(
ycoho

h2

dh

dt
− ∂νy

∂t

){
cos θ

KPn

,
sin θ

KPt

}
(9)

where r is the fibre radius. In (9) we compute the local drag force by modelling the
bead–fibre structure of the core proteins in figure 1 as a uniform fibre whose radius
is that of the bead to simplify the analysis. As shown earlier, in phase I (h<ht ) the
ends of the fibres overlap and form a thin layer where portions of the fibre ends
are in contact with one another. The viscous resistance of this overlapping region
is balanced by the elastic restoring force at the initial contact points of the fibres
with the underside of the layer, as shown by the dotted lines in figure 5. Thus, the
flat portions of the fibres move upward but remain horizontal and parallel to the
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capillary wall during phase I. The flat portion of a fibre exerts no restoring force since
no bending energy is stored in a region of no curvature.

The instantaneous shape of core protein fibres subject to the distributed load given
by (9) satisfies an ‘elastica’ equation for the large deformation of an elastic strip. The
governing equation in θ , s intrinsic coordinates is given by (Frisch-Fay 1962):

EI
∂θ

∂s
=

∫ ho

s

[
(fn(ξ, t) cos(θ) + ft (ξ, t) sin(θ))

∫ ξ

s

sin(θ) dζ

+ (fn(ξ, t) sin(θ) − ft (ξ, t) cos(θ))

∫ ξ

s

cos(θ) dζ

]
dξ. (10)

Here EI is the flexural rigidity of core protein fibres, fn (ξ, t) and ft (ξ, t) are normal
and tangential components of the local instantaneous load and ξ , ζ are dummy
variables. The integro-differential equation (10) cannot be solved in a closed form,
except for the special case of a concentrated vertical load applied at the fibre tip
(Frisch-Fay 1962). Numerical solutions are also available for a uniform or linearly
varying load (Lee, Wilson & Oh 1993). In the current application, the numerical
procedures in ANSYS (v8.0, commercially available from ANSYS, Inc.) are used to
solve (10) for an arbitrary f (ξ, t).

3.2.2. Non-dimensionalization

It is convenient to introduce the following dimensionless variables and parameters:

h∗ =
h

ho

, y∗ =
y

ho

, v∗
y =

vy

ho

t∗ =
t

τ
, f ∗ =

f h3
o

EI
. (11)

Here τ is the dimensional reference time, which is defined as

τ =
π

co

r2

Kpn

µh4
o

EI
. (12)

Equation (9) can be rewritten in dimensionless form as

f ∗ = −co

c

(
coy

∗

h∗2

dh∗

dt∗ −
dv∗

y

dt∗

)
{cos θ, Kr sin θ}. (13)

Here Kr =KPn/KPt . One can obtain the distributed hydrodynamic load along the
fibre from (13) if the fibre shape and the local small displacements, dh∗ and dv∗

y , in
the time interval dt∗are known. Equations (10) and (13) can be solved numerically at
each time step by an iteration procedure as described next.

3.2.3. Numerical solution procedure

(i) Starting from a prescribed fibre shape whose tip height is h∗ at time t∗, one
guesses a new fibre shape whose tip height is h∗ +dh∗ and as an initial guess assumes
other points are displaced by an amount dv∗

y which increases linearly with distance
along the fibre subject to dv∗

y = dh∗ at s∗ = 1 at time t∗ + dt∗. (ii) One then computes
the hydrodynamic load using (13) for the assumed value of dh∗and the guessed
displacement distribution dv∗

y . The assumed time interval dt∗ serves as a scaling
constant for the loading f ∗. (iii) Using the loading from step (ii), one calculates the
fibre shape from (10) and the upward displacement of the fibre tip dh∗ using the
numerical program for the ‘elastica’ in ANSYS. The value of dt∗ is set by requiring
that the assumed dh∗ and the predicted dh∗ from the ANSYS program agree. This
completes the first iteration. (iv) One now uses this newly computed shape to provide
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new values for dv∗
y and dh∗and iterates steps ii–iv until the new fibre shape converges.

The criterion for convergence is that the integral
∫ s∗ = 1

s∗ = 0
|v∗n

y − v∗n−1
y |ds∗ < 0.001 where

v∗n−1
y and v∗n

y denote the vertical deflection of the same fibre element at the n−1 and n

iteration. Since the shape of the fibre is not very sensitive to the detailed loading, one
can achieve convergence after less than 10 iterations. (v) This new shape at t∗ + dt∗

is then treated as a known shape and steps (i–vi) are repeated until the fibre layer is
fully restored. In this manner, one obtains the fibre layer dimensionless height h/ho,
the dimensionless fibre deflection vx/ho, vy/ho and the dimensionless fibre loading
f h3

o/EI as a function of t/τ .
Figures 7(b) and 7(c) below show that the normal hydrodynamic load on the fibre

increases monotonically with distance s along the fibre length and the tangential load
has a complex distribution which changes shape in passing from phase I to phase II.
At the transition between phase I and II, the dimensionless transition height of the
fibre layer, h∗

t = ht/ho, would be 0.367 for a linearly varying vertical load. In phase I
(h∗ <h∗

t ) the curved portion of the fibre is similar to the fibre shape at h∗ = h∗
t except

that the fibre behaves as if it has a foreshortened length l in this region. Thus, the
horizontal portion carrying no net load is ho − l. The initial fibre shape for phase I is
assumed to be that of a fibre subject to a linearly varying load on its curved portion
plus its horizontal end segment. The initial height of this flat segment is the measured
initial thickness of the ESL in the experiment. The initial fibre shape for phase II is
the fibre shape at the end of phase I.

4. Results
Figure 6 compares our theoretical prediction for h/ho with the experimental data

in figure 3(a) and also shows the predictions derived from the data in figure 2(b)
of Damiano & Stace (2002). In the experiment, we measured the gap between
the RBC membrane and the EC membrane. This gap includes two layers: the
ESL and a lubricating plasma layer between the RBC membrane and the ESL
surface (Secomb et al. 2001; Vink & Duling 1996; Weinbaum et al. 2003). The
measured velocity of the WBC and hence the velocity of the trailing RBCs in figure
3(a) is approximately 50 µm s−1. At this velocity the results in figure 3 of Vink
& Duling (1996) indicate a plasma layer thickness of approximately 70 nm. If we
subtract this estimated plasma layer thickness from the measured gap of 470 nm
between the RBC and EC cell membranes before the passage of the WBC we
estimate that the undisturbed ESL thickness is 400 nm. In figure 6, the measured ESL
thickness is normalized by its undisturbed thickness, 400 nm, and the experimental
time is normalized by the dimensional reference time τ in (12). An optimum fit between
theory and experiment is obtained for τ = 14 s. All the parameters in (12) are either
measured or can be theoretically approximated except the flexural rigidity EI. KPn

and KPn are estimated using formulae for the flow perpendicular (Sangani & Acrivos
1982) and parallel (Cowin, Weinbaum & Zeng 1995) to a periodic array of parallel
fibres. If ho = 400 nm, co =0.16, µ = 1.2 cP, r = 6 nm, KPn = 3.16 nm2 (Weinbaum et al.
2003) and KPt = 6.08 nm2 (Sugihara-Seki 2005), one finds that EI = 490 pN nm2. The
data taken from Damiano & Stace (2002) are shifted to the right by 0.01 since the
starting point in their calculation is h/ho = 0.5. There are no theoretical predictions
for the early large-deformation portion of the recovery. The data in Damiano & Stace
(2002) are scaled by a factor of 4900 since they use a different reference time in their
model.
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Figure 6. Comparison of our model predictions (solid line) and the predictions (open
triangles) of figure 2(b) in Damiano & Stace (2002) with the experiment results shown in
figure 3(a) (black dots). The ESL thickness is normalized by 400 nm, the undisturbed ESL
thickness, and the recovery time is normalized by the dimensional reference time defined by
(12) with a value of 14 s. The data taken from Damiano & Stace are rescaled by a factor of
4900 and shifted to right by 0.01 since the starting point of their recovery of the ESL is 0.5 its
initial thickness.

Figure 7(a) shows the computed fibre shapes and figures 7(b) and 7(c) show the
normal and tangential hydrodynamic loading, respectively, at different times during
restoration. The transition between phase I and II occurs at 0.041 s when h∗

t = 0.36.
The fibre shapes are not very sensitive to the detailed load distribution as long as the
fibre tip is displaced to the same height. Thus, the transition height predicted herein,
h∗

t = 0.36, is very close to the value h∗
t = 0.367 that would be predicted for a linearly

increasing vertical load distribution.

5. Discussion
We have used effective-medium and ‘elastica’ theory for the large deformation of

elastic fibres to model the core protein fibre recoil after compression by the passage
of a WBC in a tightly fitting capillary. We estimated the flexural rigidity EI of the
core protein fibres by fitting the predictions of the model to the experimental data for
the time-dependent restoration of the ESL. The predicted value of EI is 490 pN nm2,
which is 70 % of the value 700 pN nm2 predicted in Weinbaum et al. (2003) and about
3 % of the measured value for an actin filament (Dupuis et al. 1997; Gittes et al.
1993). This flexural rigidity of the actin filaments is required for the core proteins
to be rigidly supported at their base. The present model is a major improvement of
our previous model in Weinbaum et al. (2003) since we consider the relative motion
of the fluid and fibres, use a realistic family of shapes for the fibre recoil and use
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large-deformation theory for ‘elastica’ to describe the recoil process. In contrast,
Weinbaum et al. (2003) assumed a stagnant fluid and used small-deformation
theory. Considering these improvements in the model it is rather surprising that the
predicted value of EI differs by only 30 %. This is probably due to the fact that the
large-deformation portion of the recoil in phase I is short lived compared to the total
recoil, see figure 7(a).

It has long been recognized that the microvascular endothelium is covered with an
ESL – a matrix layer of proteoglycans and glycoproteins. In vivo observations show
that the ESL maintains structural integrity with little deformation when subject to
the fluid shear stress of flowing blood (Vink & Duling 1996) and is restored to its
original thickness after being crushed by the passage of WBCs as observed herein.
These observations suggest that the layer has structural stiffness and elastic, oncotic
or electrochemical restorative properties (Damiano & Stace 2002; Pries et al. 1997;
Secomb et al. 2001a, b; Weinbaum et al. 2003).

Wiederhielm & Black (1976) found that insoluble collagen exhibits a remarkable
volume exclusion effect on plasma proteins and the oncotic pressure of a plasma
protein solution is increased considerably when it is mixed with collagen and
hyaluronate. Thus, Pries et al. (1997) suggest that the colloid osmotic pressure in
the endothelial glycocalyx layer may exceed that of blood plasma due to loosely
adsorbed plasma proteins on the glycocalyx component even in the absence of
collagen and this increase of osmotic pressure must be balanced by tension along
the core protein from a mechanical point of view. In this way, an externally applied
force is needed to release the tension and deform the glycocalyx layer. Experiments
in Pries et al. (1998) show that reduction of plasma protein levels in microvessels
in vivo lead to reduced flow resistance and they hypothesize that the glycocalyx layer
becomes thinner since fewer proteins are adsorbed. Secomb et al. (2001a, b) argue that
the difference in oncotic pressure required to maintain ESL thickness is extremely
small, of the order 20 dyn cm−2, and use this estimate to theoretically predict the
deformation of the glycocalyx layer when RBCs pass through a capillary. This model
provides reasonable predictions of the ‘pop out’ phenomenon, the lift off of the red cell
from the capillary wall and its rise through the ESL as its velocity increases starting
from rest. However, Hu et al. (2000) calculated the protein concentration distribution
across the glycocalyx layer and found that the concentration drops sharply across the
ESL and that the layer serves as a molecular sieve. This view is strongly supported
by the recent experiments of Adamson et al. (2004) where the oncotic forces across
the ESL are measured. Loss of this molecular sieve by hyaluronidase treatment (Van
den Berg, Vink & Spaan 2003) results in subendothelial edema formation, consistent
with the associated loss of protein concentration drop across the glycocalyx. Thus, the
oncotic pressure of the adsorbed proteins of the blood plasma would have to exceed
the oncotic pressure induced by the ESL as a molecular sieve for oncotic swelling of
the ESL to occur.

Vink, Wieringa & Spaan (1995) showed that repulsion of negative charges on
the membrane of red blood cells by anionic glycocalyx sites influences capillary

Figure 7. The time-dependent change in shape of the core protein fibre (a) and the normal
(b) and tangential (c) components of its local hydrodynamic loading during ESL restoration
after the passage of a WBC. The dotted lines in (b) show the hydrodynamic loading on the
flat portion of the core protein fibre, which is balanced by the restoring force of the fibres in
the matted layer beneath it.
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hemodynamics, and Vink & Duling (2000) found that negatively charged molecules
diffuse more slowly into the glycocalyx than their neutral counterparts. Stace and
Damiano (2001) proposed that this is due to fixed negative charges that are bound
to the glycocalyx fibres. They modelled the glycocalyx layer as a diffusely distributed
anionic mucopolysascharide matrix without an elastic restoring capability. Based on
this picture of the glycocalyx layer, they developed a mechano-electrochemical model
to predict the recovery time of the glycocalyx layer after its compression by the passage
of a WBC (Damiano & Stace 2002). The fundamental premise is that mechanical
deformations of the layer caused by the passage of the WBC produce a departure from
a near electroneutral equilibrium. This creates gradients of electrochemical potential
that result in a redistribution of mobile ions and a rehydration of the layer after its
compression. The model can predict recovery times that agree with experiment and
restoration profiles that are similar to this study, see figure 6, provided the ratios of
glycocalyx fixed charge concentration to mobile ion concentration and the cationic
charge density of blood are chosen to provide an optimum two-parameter fit.

The third hypothesis, proposed by Weinbaum et al. (2003), is that the core proteins
in the ESL depicted in figure 1 have a finite flexural rigidity sufficient to withstand
significant deformations of the glycocalyx layer due to blood flow and large enough
to restore the layer after a large-amplitude compression by passing WBCs. Important
experimental evidence in support of this hypothesis is the fact that the quasi-periodic
structure for the distribution of the molecular level scattering centres along the axes
of the core proteins observed in Squire et al. (2001) would not be possible in the
presence of thermal fluctuations due to Brownian motion unless the core proteins had
a non-negligible flexural rigidity. To this end the model in Weinbaum et al. (2003)
predicts that the value of EI, 700 pN nm2, required to restore the ESL after the
passage of a WBC is also sufficient to limit deflections of the core proteins to at most
a few percent of their length at physiological flow rates.

The elastic model in Weinbaum et al. (2003) provides only a reasonable
characteristic time for the restoration of the compressed glycocalyx layer. It is too
simplified to provide realistic predictions for the time-dependent changes in shape of
the core proteins or detailed predictions of the recovery profiles for ESL thickness
that can be compared with the experimentally measured restoration curves in figure
3. The theory for small deflections in Weinbaum et al. (2003) describes only the final
approach to equilibrium, neglects the y component of the velocity and treats the fluid
in the matrix layer as a stagnant fluid. The present model for large fibre deformations
is superior in that it corrects all of these shortcomings and also considers in an
approximate manner the difficulties that arise from an ESL with overlapping fibres
at its edge for large compressions. This is clearly illustrated in figure 6 where the
theory provides good agreement with experiment for both phase I and phase II of
the restoration process using only a single curve-fitting parameter EI.

The oncotic (Secomb et al. 2001a, b), the mechano-electrochemical (Damiano &
Stace 2002; Stace & Damiano 2001) and the elastic (Weinbaum et al. 2003) theoretical
models all agree that the flow within the glycocalyx layer is negligible and that this
layer shields the endothelial cell membrane from the direct shearing of the blood
flow. Thus, these models also need to address the issue of mechanotransduction
across the glycocalyx layer in addition to the mechanical properties that provide its
stiffness. Both the ‘oncotic force’ and the ‘mechano-eletrochemical’ models neglect the
flexural rigidity of the core proteins and assume that the fluid shear stress is passively
transmitted to the membrane of endothelial cells as a surface traction. The basic
question is how the fluid shear is transmitted across the endothelial membrane to
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the actin cortical web. In the oncotic force model a tangential component of tension
develops along the ESL fibres due to fluid shear and is transmitted as a traction
force to the intracellular cytoskeleton via the transmembrane proteins that form the
attachment points for the ESL fibres. In the elastic model described herein fluid shear
induces bending moments on the ESL fibres due to their finite flexural rigidity. These
fibres are assumed to be rigidly linked by transmembrane proteins to the stiffer actin
cortical cytoskeleton beneath the membrane.

The recent experiments of Thi et al. (2004) show that in the presence of plasma
proteins, either 1% bovine serum albumin or fetal bovine serum, there was a
reorganization of the actin cytoskeleton and a redistribution of associated linker
molecules, such as vinculin, in rat fat pad endothelial cells in response to a fluid shear
of 10 dyn cm−2 for 5 h. This response could be completely abolished at the same fluid
shear stress applied for the same duration if the plasma proteins were removed or the
ESL was enzymatically treated with heparinase. In either case more than half the ESL
fibres were still present, but they were unable to transmit the tangential stress across
the membrane and there was no cytoskeletetal reorganization. Thi et al. explain this
behaviour in terms of the elastic model described herein. In this model the bending
moment on the actin cytoskeleton is transmitted to the dense peripheral actin band
associated with the adherens junction at the border of the cell. This model predicts
that at a shear stress of 10 dyn cm−2 the integrated bending moment on the adherens
junction is sufficient to ‘unzip’ the VE-cadherin linkage between adjacent cells and
initiate a disruption of the dense peripheral actin bands.
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HL-44485, the Netherlands Organization for Scientific Research (grant # 902-16-192
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